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A database consisting of 168 dipeptides and 140 tripeptides was constructed from published literature
to study the quantitative structure-activity relationships of angiotensin I-converting enzyme (ACE)
inhibitory peptides. Two models were computed using partial least squares regression based on the
three z-scores of 20 coded amino acids and further validated by cross-validation and permutation
tests. The two-component model could explain 73.2% of the Y-variance (inhibitor concentration that
reduced enzyme activity by 50%, IC50) with the predictive ability of 71.1% for dipeptides, while the
single-component model could explain 47.1% of the Y-variance with the predictive ability of 43.3%
for tripeptides. Amino acid residues with bulky side chains as well as hydrophobic side chains were
preferred for dipeptides. For tripeptides, the most favorable residues for the carboxyl terminus were
aromatic amino acids, while positively charged amino acids were preferred for the middle position,
and hydrophobic amino acids were preferred for the amino terminus. According to the models, the
IC50 values of seven new peptides with matchable primary sequences within pea protein, bovine
milk protein, and soybean were predicted. The predicted peptides were synthesized, and their IC50

values were validated through laboratory determination of inhibition of ACE activity.
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INTRODUCTION

Bioactive peptides are increasingly becoming important as
starting points for the development of drugs and drug-related
compounds (1,2). It is also a fact that bioactive peptides
contribute greatly to the content of functional foods, as food
scientists realized that some specific sequences within the parent
food proteins can provide physiological benefits after they have
been released through in vitro processing or in vivo digestion
(3, 4). Among various bioactive peptides, antihypertensive
peptides have been studied extensively and the mechanism of
activity involves inhibition of angiotensin I-converting enzyme
(ACE), the key enzyme responsible for the regulation of blood
pressure via the renin-angiotensin system. ACE converts
angiotensin I to angiotensin II, a potent vasoconstrictor; ACE
also hydrolyzes and inactivates bradykinin, a potent vasodilator.
Therefore, excessive activity of ACE leads to an increased rate
of vasoconstriction and development of high blood pressure.
Inhibitory peptides block the ACE-mediated production of
angiotensin II, and the reduction in ACE activity results in
enhanced levels of bradykinin (5, 6). Some antihypertensive

peptides, especially short peptides such as VPP and IPP that
are present in sour milk, have been shown to be resistant to in
vivo degradation and were able to exert antihypertensive activity
through the inhibition of ACE in aorta (7, 8). In a human trial,
the administration of this type of sour milk was shown to be
effective in reducing the blood pressure of hypertensive patients;
a product containing VPP and IPP has since been commercial-
ized (9-11). Productions of ACE inhibitory peptides from
several sources have also been reported (3,4, 8, 12-34).

In contrast to the vast amount of information that is available
on production and characterization of antihypertensive peptides,
there is very limited information on the relationships between
structure and activity of food protein-derived antihypertensive
peptides, especially the effect of primary structure on potency.
Limited works on structure-activity relationships have been
reported mostly from the early studies of snake venom peptide
analogues and synthetic dipeptides (35-37). Although structure
and activity relationships have also been a subject of research
for food-derived ACE inhibitory peptides, all knowledge
obtained so far was derived primarily from qualitative analysis
of chemically synthesized peptides or peptide analogues having
similar structures to those of known peptides (12, 13). Conse-
quently, current understanding of the structure and activity
relationships of ACE inhibitory peptides is experimenter-
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dependent, which is insufficient and unable to provide predictive
power. For example, the common applied COST approach
(change one structural factor at a time) was reported to be
inefficient and unrealistic for the study of bioactive peptides
(38). In contrast, quantitative structure-activity relationships
(QSAR), an important area of chemometrics, search information
relating chemical structure to biological and other activities.
QSAR has become increasingly helpful in understanding many
aspects of chemical-biological interactions in drug and pesticide
research as well as many other areas (39). The basic assumption
in QSAR is that the biological activity (BA) within a set of
compounds is related to the structural variation of the com-
pounds; that is, the BA can be modeled as a function of
molecular structure (40). For example, the threez-approach has
been successfully applied to develop sequence-dependent models
of small peptides’ biological properties (38, 41, 42) and
functional behavior of polypeptides (43, 44). Therefore, it is
possible to use QSAR to model ACE inhibitory peptides and
predict the most potent peptides and thus study and develop
new ACE inhibitory peptides from food proteins driven by the
predicted structure and activity outcomes.

Therefore, the objectives of this study were to (i) construct
an ACE inhibitory peptide database and apply it for modeling
of activities using structural descriptors of individual amino acids
and (ii) further predict and validate potentially potent ACE
inhibitory peptides based on the models.

MATERIALS AND METHODS

Preparation of Data Set. An ACE inhibitory peptide database
consisting of 168 dipeptides and 140 tripeptides that were collected
from previously published works was constructed. These peptides were
selected based on the fact that each one has a reported (in vitro assay)
IC50 (inhibitory concentration that reduced ACE activity by 50%) value
that is less than 20 mM. Peptides reported from different sources with
the same sequence were included provided their determined IC50 values
were different; otherwise, only one peptide result was used. Data sets
for the dipeptides and tripetides are presented inTables 1 and 2,
respectively.

Analysis of Data Set.The characterization of each individual amino
acid by the threez-scores (Table 3), namely,z1, z2, and z3, was
previously calculated by principal component analysis (PCA) from a
matrix consisting of 29 physicochemical variables (41). These three
resulting principal components, so-called principal properties, are linear
combinations of the primary data and were tentatively interpreted to
represent largely lipophilicity (z1), steric properties or side chain bulk/
molecular size (z2), and electronic properties (z3). Because the activities
of peptides ranged over almost 5 orders, from-0.68 to 4.23 in log
units, they were log-transformed prior to modeling. The amino acid at
the amino terminus was designed asn1, and its properties were described
asn1z1, n1z2, andn1z3; the amino acid adjacent to the amino terminus
was designed asn2, and its properties were described asn2z1, n2z2, and
n2z3, etc. Partial least squares regression (PLS) analysis between amino
acid descriptors (predictors,X) and log-transformed IC50 values
(dependent,Y) was carried out using SIMCA-P version 10 (Umetrics
Inc., Kinnelon, NJ). All variables were centered and scaled to unit
variance prior to the analyses except with specification, and thereby,
all variables had an equal participation in the model. In SIMCA-P, the
number of significant PLS components was chosen automatically by
using various rules based on a statistic calledQ2. Q2 is the cross-
validation correlation coefficient that is calculated from predicted
residual sum of squares (PRESS) and refers to model’s predictive
ability. Another important parameter in PLS analysis is the multiple
correlation coefficient (R2), which provides an estimate of the model
fit. The optimal model was made where a reasonable balance between
the model’s fit and predictive ability was achieved (44, 45).

Validation of Predicted Peptides.Predicted ACE inhibitory pep-
tides with matchable sequences within food proteins (milk protein,
soybean protein, and pea protein) were synthesized and used as an

external validation data set. Three predicted dipeptides (FW, WW, and
YW), four predicted tripeptides (VRF, IKP, LRF, and LRW), and two
famous milk protein-derived tripeptides (VPP and IPP) were synthesized
by Genscript Corp. (Piscataway, NJ). The purity (95-99.9%) of each
peptide was measured by high-performance liquid chromatography
(HPLC), and the structure was verified by mass spectrometry (Genscript
Corp.). The ACE inhibitory activity of each peptide was analyzed by
a spectrophotometric assay according to the method of Cushman and
Cheung (46).

RESULTS AND DISCUSSION

QSAR of Di- and Tripeptides. It is believed that peptides
with two or three amino acid residue lengths could be absorbed
directly from the digestive tract into the blood circulatory system
(47) and be able to reach the action sites to exert physiological
functions. Therefore, the results could provide very potent
peptides that have physiological relevance. Modeling of these
di- and tripeptides was conducted according to the data sets in
Tables 1and2, respectively. Initial modeling of the threez-scale
descriptors with activities resulted in a two-component PLS
model explaining 65.1% of the sum of squares inY-variance
with a predictive ability of 62% for the dipeptide set, and the

Table 1. Dipeptides and Their IC50 Values for the in Vitro Inhibition of
Angiotensin Converting Enzymea

peptide
log
IC50 peptide

log
IC50 peptide

log
IC50 peptide

log
IC50

IY 0.57 RP 1.32 LF 3.52 GT 3.76
YP 2.95 GP 2.56 IR 2.84 GE 3.85
DY 2.00 GP 3.08 RL 3.39 GG 3.86
YG 3.04 TP 2.46 KP 1.71 GD 3.96
QK 2.95 VP 2.76 FL 1.20 VG 3.04
IY 0.32 GI 3.11 VY 1.25 IG 3.08
LY 0.83 DF 2.56 IL 1.74 RG 3.08
MF 1.65 NP 3.36 VY 1.55 YG 3.30
RY 1.71 DM 2.78 IY 0.79 AG 3.40
MY 2.29 DL 3.30 AW 1.27 KG 3.51
LY 1.59 GY 2.42 FY 1.63 FG 3.57
KW 0.21 VY 1.20 VW 0.52 MG 3.68
TF 1.25 GF 2.85 IW 0.18 WG 3.77
LY 0.81 VW 0.20 LW 1.37 HG 3.80
YL 1.21 DG 1.09 FY 0.22 EG 3.87
AF 1.18 FQ 1.71 KF 2.06 SG 3.93
VF 0.96 VY 1.41 IF 2.97 LG 3.94
AY 1.28 TF 1.95 VY 1.76 TG 4.00
FP 2.50 LY 1.51 GQ 3.75 QG 4.00
VW 0.15 YL 1.91 TP 3.32 DG 4.15
YW 1.02 AF 1.88 TK 3.21 PG 4.23
HY 1.42 IY 1.02 YH 0.71 VW 0.20
RF 1.97 VK 1.11 KW 1.03 IY 0.30
GG 3.94 FY 1.40 KY 0.89 AW 1.00
GY 2.41 AY 2.00 KF 1.45 RW 1.20
IY 0.38 LF 2.10 FY 0.57 VY 1.34
PR 0.61 YV 2.76 VW 1.03 VF 1.72
RY 1.02 YE 2.80 VY 1.64 AY 1.94
AW 1.08 GW 1.48 IW 1.09 IP 2.11
IY 0.36 GY 2.32 VY 1.05 RP 2.26
LW 0.83 GP 2.65 IA 2.18 AF 2.28
SY 1.82 GF 2.80 WL 1.48 AP 2.36
GY 1.86 GI 3.08 WA 2.44 RF 2.36
NY 1.51 GM 3.15 VW 0.40 VP 2.62
SF 2.11 GA 3.30 WM 1.98 AP 2.43
GF 2.44 GL 3.40 MW 1.00 IR 2.92
NF 1.67 GH 3.49 IW 0.67 VQ 3.11
LW 1.70 GR 3.51 LW 1.24 IY 0.43
YP 2.86 GS 3.58 RP 1.96 VW 0.23
YG 3.18 GV 3.66 A P 1.46 MW 0.58
LF 2.54 GK 3.73 KP 1.34 RW 1.34
YL 2.09 GQ 3.73 FY 0.81 KP 1.48

a Peptides in bold have also been tested in vivo for antihypertensive activity.
Repeated peptides indicate results from different laboratories.
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one-component PLS model explained 36.1% of the sum of
squares inY-variance with a predictive ability of 28.5% for the
tripeptide set. In an attempt to improve the predictive ability of
the model, outliers were excluded as previously described (48,
49) and calculations were continued to make new models.
Outliers were identified if the absolute residual value of
predicted log (IC50) - measured log (IC50) exceeded 1.5 units.
The tu plots (Figure 1) displayed the relationship betweenX
and Y; outliers, which showed a much worse fit than others,
were numbered and excluded in the second round of modeling
(48,49). Modeling of the data set that excluded outliers resulted
in substantially improved models, a two-component model
explaining 73.2% of theY-variance with the predictive ability

of 71.1% for dipeptides and a single-component model explain-
ing 47.1% of theY-variance with the predictive ability of 43.3%
for tripeptides.

The resulting models are illustrated inFigure 2, where the
relationship between the predicted vs the observed values is
presented. The multiple correlation coefficient (R2) for dipeptides
was comparable to the previous results that used a 58 dipeptide
set, such as 70.0% in Collantes and Dunn’s work (50) and 70.8%
in Zaliani and Gancia’s work (51). However, theR2 value was
low for the tripeptide model when compared with the value for
the dipeptide model. The lowerR2 for the tripeptide model could
be as a result of greater interlaboratory variations and unknown
systemic differences (41). The two models were validated
initially by cross-validation during modeling for a total of seven
times. The predictive power of these two ACE models was
further validated by response permutation, where theY-response
data vectors (log IC50) were each randomly reordered and
permuted a number of times but with unperturbedX data
followed by computation of a QSAR model, which was used
to refit the model (52). Twenty times permutation and cross-
validation rounds computed the resultingR2 andQ2 intercepts,
which are 0.003 and-0.145 for the dipeptide set and 0.039
and -0.091 for the tripeptide set (Figure 3), respectively.
SIMCA-P displays the plot of the correlation coefficient between
the originalY and the permuttedY vs the cumulativeR2 andQ2

and draws the regression line. The intercept (R2 andQ2 when
the correlation coefficient is zero) is a measure of the over fit
(45). It was suggested that the desirable limits for a valid model
should be anR2 intercept< 0.3 and aQ2 intercept< 0.05 (53);
therefore, the two models developed here were regarded as valid.

Table 2. Tripeptides and Their IC50 Values for the in Vitro Inhibition of
Angiotensin Converting Enzymea

peptide
log
IC50 peptide

log
IC50 peptide

log
IC50 peptide

log
IC50

FEP 1.08 MNP 1.82 GPM 1.23 YEY 0.60
IKP 0.23 NPP 2.46 GKP 2.55 PSY 1.20
LNY 1.91 PPK 3.00 IPA 2.15 LGI 1.46
HQG 2.87 ITT 2.83 VYP 2.46 ITF 1.69
HHT 2.90 TTN 2.83 VWY 0.97 IPP 1.92
ALP 2.38 TNP 2.32 FYN 1.26 IAP 1.40
LKP 0.20 GQP 0.51 YGG 4.00 EAP 2.61
LYP 0.82 GSH 1.51 GGY 0.11 FAP 0.62
DYG 3.43 RML 3.01 YPR 1.22 SVY 3.23
AQK 3.26 YVA 0.15 PRY 0.40 LEK 2.90
IEP 0.20 GKV 0.59 YGL 2.61 GVY 2.60
IKY −0.68 SVY 0.91 VFK 3.01 IRP 0.26
LAP 0.54 FFL 1.57 IKW −0.68 LPP 0.98
LKP −0.49 IFL 1.65 IKP 0.84 LVL 1.09
GRP 1.30 LPF 1.60 IWH 0.54 LRP −0.57
RFH 2.52 GPP 1.25 VAP 0.30 LSP 0.23
AKK 0.50 AGP 2.75 FAP 0.58 LEP 0.28
RVY 2.31 VIY 0.88 PLW 1.56 VSP 1.00
LKL 2.27 RIY 1.45 FGK 2.20 LEP 1.63
HIR 2.98 AFL 1.80 AVP 2.53 LNP 1.76
HHL 1.73 FAL 1.42 PYP 2.34 LLP 1.20
HLL 1.76 IAQ 1.54 LVR 1.15 VLP 0.59
HHL 0.73 VVF 1.55 TAP 0.54 LAY 1.40
LIY −0.09 IVQ 1.98 VRP 0.34 IRA 1.11
LAY 0.59 VQV 0.94 MPP 0.98 LAA 1.11
LLP 1.76 AQL 1.76 LKP 0.60 LEE 2.00
LEE 2.00 LVQ 1.15 TVY 1.18 MKY 0.86
FNE 2.53 FDK 2.59 IVY −0.32 LRY 0.70
GPL 0.35 IVY 0.38 IMY 0.26 VSW 1.37
GPV 0.67 VLP 1.91 DGL 0.33 LWA 1.10
IPP 0.70 VLY 1.49 TKY 0.36 VTR 2.13
GPL 0.41 ILP 1.51 LTF 0.44 IKW −0.27
DLP 0.68 VPP 0.95 AGP 1.95 VGP 1.42
GLY 0.95 RPP 1.78 FNF 0.84 MRW −0.22
LLF 1.90 RPK 3.27 AVL 0.85 IAY 1.10
IAP 0.43

a Peptides in bold have also been tested in vivo for antihypertensive activity.
Repeated peptides indicate results from different laboratories.

Table 3. Descriptor (Z) Scores for Amino Acids (41)

amino
acid code z1 z2 z3

amino
acid code z1 z2 z3

Ala A 0.07 −1.73 0.09 His H 2.41 1.74 1.11
Val V −2.69 −2.53 −1.29 Gly G 2.23 −5.36 0.30
Leu L −4.19 −1.03 −0.98 Ser S 1.96 −1.63 0.57
Ile I −4.44 −1.68 −1.03 Thr T 0.92 −2.09 −1.40
Pro P −1.22 0.88 2.23 Cys C 0.71 −0.97 4.13
Phe F −4.92 1.30 0.45 Tyr Y −1.39 2.32 0.01
Trp W −4.75 3.65 0.85 Asn N 3.22 1.45 0.84
Met M −2.49 −0.27 −0.41 Gln Q 2.18 0.53 −1.14
Lys K 2.84 1.41 −3.14 Asp D 3.64 1.13 2.36
Arg R 2.88 2.52 −3.44 Glu E 3.08 0.39 −0.07

Figure 1. PLS scores, u1 and t1, of the ACE peptides (a) for dipeptides
and (b) for tripeptides. The scores, such as u and t, are new variables,
are orthogonal, and are summaries of the X-variables and Y-variables,
respectively. Outliers [predicted log (IC50) − measured log (IC50) is greater
than 1.5], which are identified with numbers, were excluded from the
second round of modeling.
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Prediction and Validation of Potent ACE Inhibitory
Peptide Sequences.The importance of a givenX-variable for
Y is proportional to its distance from the origin in the loading
space and corresponds to the PLS regression coefficients (49).
The expected amino acid properties in each position are

evaluated according to their importance to theY-variable. For
dipeptides (Figure 4a),n1z1, n1z3, n2z1, andn2z3 are positively
related to the log values, whilen1z2 and n2z2 are negatively
related to the log values. Looking at the coefficients values, it
is evident that positionn2, which corresponds to the carboxyl
terminus for a dipeptide, is more important than positionn1.
The importance of the amino acid residue in positionn2 is
mainly decided byz2 (steric properties) followed byz1 (lipo-
philicity). For both positions, amino acid residues with large
bulk chain as well as hydrophobic side chains (highz2 and low
z1) are preferred, such as phenylalanine, tryptophan, and tyrosine.
It has been suggested that aromatic side chains and proline are
favored in positionn2 and branched aliphatic side amino acids
are preferred in positionn1 (37), which is similar to our results.
However, proline that is well-documented as the most favorable
amino acid for binding to ACE (1, 2) (most commercially exist-
ing inhibitors bear this residue) was not the most favorable
amino acid in this study. Hellberg et al. (38) indicated that a
highly active peptide should have an amino acid with a hydro-
phobic side chain, possibly with a positively charged functional
group in position 1 and a large hydrophobic amino acid in posi-
tion 2 based on QSAR model using ACE inhibiting dipeptides
reported by Cheung et al. (37); our results are in good agree-
ment with this previous modeling. It should be noted that the
model of Hellberg et al. (38) was constructed based on ideal
circumstances where all of the tests were performed in one single
laboratory at the same time; however, they applied quadratic
and cross-terms of thez-scales to achieve the model, which

Figure 2. Relationship between the observed and calculated values of
log (IC50) for (a) dipeptides and (b) tripeptides, after exclusion of outliers.

Figure 3. Permutation validation of the PLS model (a) for dipeptides and
(b) for tripeptides. The intercepts (R 2 and Q 2 when the correlation
coefficient is zero) are a measure of the over fit.

Figure 4. PLS regression coefficients (a) for dipeptides and (b) for
tripeptides. The importance of a given X-variable is proportional to its
distance (coefficient value) from the origin (zero). The bars indicate 95%
confidence intervals based on jack-knifing.
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requires a more complex explanation of the effects on peptide
activity.

For tripeptides (Figure 4b), n1z1, n1z2, n1z3, n2z3, and n3z1

are positively related to the log values, whilen3z3, n3z2, n2z2,
and n2z1 are negatively related to the values. For active
tripeptides, lowz1 and z2 values such as valine, leucine, and
isoleucine are preferred for positionn1, low z3 with high z1 and
z2 values such as lysine and arginine are expected for position
n2, and low z1 with high z2 and z3 values such as proline,
phenylalanine, and tryptophan are favored for positionn3. The
most favorable amino acids for the carboxyl terminus were
aromatic acids, for the second position from the carboxyl
terminus were positively charged amino acids and hydrophobic
amino acids for the amino terminus.

It is well-known that milk protein is a good source for the
production of ACE inhibitory peptides (11, 12), such as VPP
and IPP. In addition, ACE inhibitory peptides have also been
reported in soybean and pea proteins (54, 55). Three predicted
dipeptides and four predicted tripeptides were located within
the primary structure of food proteins and were then synthesized
for validation (Table 4). FW was located in pea protein
sequence, WW in soybean protein, and YW in bovine milk,
soybean, and pea proteins. VRF was located in the primary
structure of soybean protein, IKP in soybean and pea proteins,
LRW in pea protein, and LRF in milk protein. All of the
predictive error of these ACE inhibitory peptides in our study
is within the absolute limit of 1.5 units between predicted log
(IC50) - measured log (IC50) (Table 4). The biggest predictive
errors of ACE inhibitory peptides in this study are 1.39 for WW,
1.24 for VRF, and 1.11 for LRF. Among these predicted
peptides, LRW is one of the most potent ACE inhibitory
peptides ever reported and is over 100 times more potent than
the well-known milk tripeptides of VPP and IPP as determined
in our study. IKP and FW are also more potent than VPP and
IPP. These results confirm the validity of the prediction models,
which could provide a useful tool for future prediction of
potentially more potent ACE inhibitory peptides.

Conclusions. We have shown that the activities of food-
derived ACE inhibitory peptides, namely, di- and tripeptides,

can be modeled from the threez-scores of amino acids using
PLS regression. Potential new ACE inhibitory peptide sequences
with higher potency than most previously reported peptides were
proposed based on these models. It is anticipated that future
research on ACE inhibitory peptides would be driven by these
newly developed models. Further research to model peptides
with varied amino acid residue lengths will be carried out, and
we will expand this approach to include a number of other
bioactive peptides. It is likely that the predicted short peptides,
e.g., LRW, IKP, and FW, would show stronger antihypertensive
activities than the famous milk peptides, VPP and IPP. Evalu-
ation of in vivo activity using spontaneously hypertensive rats
and development of technology releasing these peptides from
parent proteins is in progress.
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